Abstract
First-breath responses to graded elastic (delta E) and resistive (delta R) loads in 29 cervical cord-injured and 80 normal men were compared with those predicted assuming identical respiratory muscle pressure (Pmus) wave forms in the unloaded and loaded states. The cord-injured group's mean actual and predicted inspiratory duration (TI) responses were equal, indicating that the average duration of their phrenic discharge remained constant during both delta E and delta R. Their mean expiratory duration (TE) responses fell short of predictions with delta E but exceeded predictions with delta R, signifying that a neural mechanism hastened inspiration following delta E but postponed it following delta R. TE/(pred TE) values (an index of phrenic timing) from different loads were proportional to concomitant TI responses but not to indices of diaphragmatic force [peak Pmus, (VT/TI)/(pred VT/TI)], movement (VT, VT/TI), or duration of contraction [TI/(pred TI)]. These findings suggest that oropharyngeal and/or pulmonary receptors signaling airflow duration, rather than diaphragmatic length or tension receptors, adjust phrenic motoneuron timing during mechanical loading. The cord-injured group produced a normal tidal volume (VT) defense coupled with a depressed frequency (f) response to delta E and, conversely, a weak VT defense coupled with a normal f response to delta R. Since both groups' VT/TI responses surpassed predictions equally, the cord-injured group's deficit was attributable entirely to impaired regulation of TE during delta E and TI during delta R. Thus chest wall receptors modulate duration and timing, but probably not average intensity, of the phrenic output during loading. Nearly one-third of the normal, but virtually none of the cord-injured, samples prolonged TI against large delta R and shortened TI agaist large delta E, suggesting that thoracic deafferentation impairs human ability to distinguish large delta R from delta E. These latter findings support the hypothesis that chest wall afferents subserve perception of respiratory force or position in humans.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献