Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia

Author:

Lawler J.1,Powers S. K.1,Thompson D.1

Affiliation:

1. School of Health, Physical Education, Recreation, and Dance, Louisiana State University, Baton Rouge 70803.

Abstract

The purpose of these experiments is to test the hypothesis that exercise-induced hypoxemia at sea level in highly trained athletes might be exacerbated during acute hypoxia and therefore result in correspondingly larger decrements in maximal O2 uptake (VO2max) compared with less trained individuals. Thirteen healthy male volunteers were divided into two groups according to their level of fitness: 1) trained endurance athletes (T) (n = 7), with a VO2max range of 56-75 ml.kg-1.min-1 and 2) untrained individuals (UT) (n = 6), with a VO2max range of 33-49 ml.kg-1.min-1. Subjects performed two incremental cycle ergometry tests to determine VO2max under hypoxic conditions [14% O2-86% N2, barometric pressure (PB) = 760 Torr] and normoxic conditions (21% O2-79% N2, PB = 760 Torr). Tests were single blind, randomly administered, and separated by at least 72 h. Mean percent oxyhemoglobin saturation (%SaO2) during maximal exercise under hypoxic conditions was significantly (P less than 0.05) lower in the T group (77%) compared with the UT group (86%). Furthermore, the T group exhibited larger decrements (P less than 0.05) in VO2max (normoxic-hypoxic) compared with the UT group. Finally, a significant linear correlation (r = 0.94) existed between normoxic VO2max (ml.kg-1.min-1) and delta VO2max (normoxic-hypoxic). These data suggest that highly T endurance athletes suffer more severe gas exchange impairments during acute exposure to hypoxia than UT individuals, and this may explain a portion of the observed variance in delta VO2max among individuals during acute altitude or hypoxia exposure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3