Activated neutrophils increase microvascular permeability in skeletal muscle: role of xanthine oxidase

Author:

Smith J. K.1,Carden D. L.1,Korthuis R. J.1

Affiliation:

1. Department of Physiology and Biophysics, Louisiana State University Medical Center, School of Medicine, Shreveport 71130.

Abstract

To determine the role of xanthine oxidase in the microvascular dysfunction produced by activated granulocytes, we examined the effect of xanthine oxidase depletion or inhibition on the increase in microvascular permeability produced by infusion of the neutrophil activator phorbol myristate acetate (PMA). Changes in vascular permeability were assessed by measurement of the solvent drag reflection coefficient for total plasma proteins (sigma) in rat hindquarters subjected to PMA infusion in xanthine oxidase-replete and -depleted animals, in animals pretreated with the xanthine oxidase inhibitor oxypurinol, and in animals depleted of circulating neutrophils by pretreatment with antineutrophil serum (ANS). Xanthine oxidase depletion was accomplished by administration of a tungsten-supplemented (0.7 g/kg diet) molybdenum-deficient diet. In animals fed the tungsten diet, muscle total xanthine dehydrogenase plus xanthine oxidase activity was decreased to less than 10% of control values. Estimates of sigma averaged 0.84 +/- 0.04 in control hindquarters, whereas PMA infusion was associated with a marked increase in microvascular permeability (decrease in sigma to 0.68 +/- 0.03). PMA infusion also caused an increase in the amount of the radical-producing oxidase form of xanthine oxidase (from 3.9 +/- 0.05 to 5.6 +/- 0.4 mU/g wet wt). ANS pretreatment attenuated this permeability increase (sigma = 0.77 +/- 0.04) and diminished the rise in xanthine oxidase activity (4.9 +/- 0.5 mU/g wet wt). Xanthine oxidase depletion with the tungsten diet or pretreatment with oxypurinol had no effect on this neutrophil-mediated microvascular injury (sigma = 0.69 +/- 0.06 and 0.67 +/- 0.03, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3