Renal O2 consumption during progressive hemorrhage

Author:

Schlichtig R.1,Kramer D. J.1,Boston J. R.1,Pinsky M. R.1

Affiliation:

1. Department of Anesthesiology, University of Pittsburgh, Pennsylvania.

Abstract

Most mammalian tissues regulate O2 utilization such that O2 consumption (VO2) is relatively constant at O2 delivery (DO2) higher than a critical value (DO2c). We studied the relationship between VO2 and DO2 of kidney and whole body during graded progressive exsanguination. The relationship between whole body VO2 and DO2 was biphasic, and whole body VO2 decreased by 5.6 +/- 14.4% (P = NS) from the initial value to the value nearest whole body DO2c. Kidney DO2 decreased in direct proportion to whole body DO2 such that the average R2 value describing the linear regression of kidney DO2 vs. whole body DO2 was 0.94 +/- 0.02. The relationship between kidney, like whole body, VO2 and DO2 appeared biphasic; however, kidney VO2 decreased by 63.3 +/- 10.4% (P less than 0.0001) from the initial value to the value nearest kidney DO2c. Renal O2 extraction ratio was relatively constant over a wide range of kidney DO2, whereas whole body O2 extraction ratio increased progressively at all whole body DO2 values as whole body DO2 decreased. However, final values of O2 extraction ratio were indistinguishable for whole body (0.86 +/- 0.1) and kidney (0.86 +/- 0.06) (P = NS). We conclude that the pattern of kidney and whole body VO2 response to decreasing DO2 differs during hemorrhage, particularly in the range of DO2 normally associated with tissue wellness.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of fluid and norepinephrine resuscitation in a sheep model of endotoxin shock and acute kidney injury;Journal of Applied Physiology;2019-09-01

2. Venous oxygen saturation in critical illness;Journal of Veterinary Emergency and Critical Care;2018-08-02

3. Personalizing blood pressure management in septic shock;Annals of Intensive Care;2015-11-16

4. Regional Tolerance to Acute Normovolemic Hemodilution: Evidence That the Kidney May Be at Greatest Risk;Journal of Cardiothoracic and Vascular Anesthesia;2015-04

5. Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption;American Journal of Physiology-Renal Physiology;2014-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3