Effects of hydrogen sulfide exposure on surface properties of lung surfactant

Author:

Green F. H.1,Schurch S.1,De Sanctis G. T.1,Wallace J. A.1,Cheng S.1,Prior M.1

Affiliation:

1. Respiratory Research Group, University of Calgary, Alberta, Canada.

Abstract

Hydrogen sulfide is an irritant and chemical asphyxiant gas that exerts its primary toxic effects on the respiratory and neurological systems. Exposure to hydrogen sulfide above a threshold value of 200-300 ppm is characterized by the sudden onset of hemorrhagic pulmonary edema. The purpose of this study was to determine whether this response is associated with changes in the surface properties of pulmonary surfactant. Bronchoalveolar lavage fluid was retrieved from the lungs of Fischer 344 rats exposed to two concentrations of hydrogen sulfide or fresh air for 4 h. Surface tension-lowering properties were assayed using a captive bubble surface tensiometer. Lung injury was assessed by histopathology and measurements of total protein and lactate dehydrogenase activity in the lavagate. Marked abnormalities in surfactant activity were demonstrated in the lavagates from rats exposed to the highest concentration (300 ppm) of hydrogen sulfide. These involved the properties of adsorption to the air-water interface and surface tension lowering under quasi-static interfacial compression. Exposure to 200 ppm hydrogen sulfide had no effect on minimum surface tension despite a significant increase in protein and lactate dehydrogenase in the lavagate. This would suggest a threshold-type response for the inhibition of surfactant activity by hydrogen sulfide. In vitro studies using normal rat surfactant showed that the abnormalities in surfactant activity were due to inhibitors in the edema fluid and not to a direct effect of sulfide on surfactant. The pathophysiological consequences of increased alveolar surface tension after hydrogen sulfide exposure may need to be considered in the clinical setting.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3