Adaptive modeling of the human rib cage in median sternotomy

Author:

Kenyon C. M.1,Pedley T. J.1,Higenbottam T. W.1

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, Cambridge University, United Kingdom.

Abstract

This paper describes a limited computer-analyzed kinematic model of the rib cage that can be adapted to individual subjects. Also described is its validation and use in assessing the changes in chest wall shape after coronary artery bypass graft (CABG) surgery in 12 patients. The positions of a small number of anatomic locations on the thoracic spine, ribs, manubrium, and sternum are measured from lateral and posterior-anterior chest radiographs. The computer program puts these two views together removing the magnification and reconstructs any missing points to give a three-dimensional picture of the rib cage to which mathematical models of the bones are scaled. The patients had chest radiographs taken at total lung capacity (TLC) and residual volume (RV) to investigate the source of the restrictive ventilatory defect that follows CABG. The predictions from the model were tested by comparing full-sized computer plots with the actual chest radiographs. The estimates of the bony structures were accurate to +/- 3 degrees for orientations and +/- 6 mm for positions. We found reduced rib motion both "pump-handle" (theta) and "bucket handle" (psi) going from theta, psi left, psi right = 9 degrees, 10 degrees, 14 degrees to 4 degrees, 10 degrees, 9 degrees, respectively, after surgery with P less than 0.025, 0.42, 0.07. The angles were measured from the horizontal and increased caudally. There was also reduction in the range of angles subtended by the arc of the thoracic vertebrae between TLC and RV, which went from 12 degrees to -1 degrees (P less than 0.015). These data explain the fall in lung volumes that follow CABG and provide insight into the contribution made by the ribs and spine in full inspiration and full expiration.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3