Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus

Author:

Tsuda A.1,Henry F. S.1,Butler J. P.1

Affiliation:

1. Physiology Program, Harvard School of Public Health, Boston, Massachusetts, USA.

Abstract

We examined the effects of rhythmic expansion of alveolar walls on fluid mechanics in the pulmonary acinus. We generated a realistic geometric model of an alveolated duct that expanded and contracted in a geometrically similar fashion to simulate tidal breathing. Time-dependent volumetric flow was generated by adjusting the proximal and distal boundary conditions. The low Reynolds number velocity field was solved numerically over the physiological range. We found that for a given geometry, the ratio of the alveolar flow (QA) to the ductal flow (QD) played a major role in determining the flow pattern. For larger QA/QD (as in the distal region in the acinus), the flow in the alveolus was largely radial. For small QA/QD (as in the proximal region in the acinus), the flow in the alveolus was slowly rotating and the velocity field near the alveolar opening was complex with a stagnation saddle point typical of chaotic flow structures. Performing Lagrangian fluid particle tracking, we demonstrated that in such a flow structure the motion of fluid could be highly complex, irreversible, and unpredictable even though it was governed by simple deterministic equations. These are the characteristics of chaotic flow behavior. We conclude that because of the unique geometry of alveolated duct and its time-dependent motion associated with tidal breathing, chaotic flow and chaotic mixing can occur in the lung periphery. Based on these novel observations, we suggest a new approach for studying acinar fluid mechanics and aerosol kinetics.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3