Oxidation of exogenous [13C]galactose and [13C]glucose during exercise

Author:

Leijssen D. P.1,Saris W. H.1,Jeukendrup A. E.1,Wagenmakers A. J.1

Affiliation:

1. Department of Human Biology, University of Limburg, Maastricht, The Netherlands.

Abstract

The present study examined the oxidation of exogenous galactose or glucose during prolonged submaximal cycling exercise. Eight highly trained volunteers exercised on two occasions on a cycle ergometer at 65% of maximal workload for 120 min, followed by a 60-min rest period and a second exercise bout of 30 min at 60% maximal workload. At random, subjects ingested a 8% galactose solution to which an [1–13C]galactose tracer was added or a 8% glucose solution to which an [U-13C]glucose tracer was added. Drinks were provided at the end of the warm-up period (8 ml/kg) and every 15 min (2 ml/kg) during the first 120 min of the test. Blood and breath samples were collected every 30 and 15 min, respectively, during the test. The exogenous carbohydrate (CHO) oxidation was calculated from the 13CO2/12CO2 ratio and CO2 production of the expired air. Peak exogenous CHO oxidation during exercise for galactose and glucose was 0.41 +/- 0.03 and 0.85 +/- 0.04 g/min, respectively. Total CHO and fat oxidation were not significantly different between the treatments. Forty-six percent of the ingested glucose was oxidized, whereas only 21% of the ingested galactose was oxidized. As a consequence, more endogenous CHO was utilized with galactose than with glucose (124.4 +/- 6.7 and 100.1 +/- 3.6 g, respectively). These results indicate that the oxidation rate of orally ingested galactose is maximally approximately 50% of the oxidation rate of a comparable amount of orally ingested glucose during 120 min of exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3