Hypoxia, hypercapnia, and hypertension: their effects on pulsatile cerebral blood flow

Author:

Curran-Everett D.1,Zhang Y.1,Jones R. H.1,Jones M. D.1

Affiliation:

1. Department of Pediatrics, University of Colorado Health Sciences Center, Denver 80262, USA.

Abstract

Pulsatile cerebral blood flow reflects characteristics of arterial blood pressure as well as the structure and mechanical properties of the cerebrovascular network. Although the effects of changes in systemic blood gases and blood pressure on mean cerebral flow are established, their effects on pulsatile cerebral blood flow are unknown. These studies assessed the effects of hypoxia-hypercapnia (combined; both arterial PO2 and PCO2 approximately 55 Torr) and acute hypertension (+30–35 mmHg by aortic occlusion) on pulsatile cerebral blood flow in ketamine-anesthetized rabbits. We characterized the relationship between pulsatile systemic blood pressure (Millar catheter) and cerebral cortical capillary blood-flow (laser-Doppler) by calculating the transfer function, a frequency-domain expression that relates amplitudes and phase angles of flow output to those of the pressure input. During hypoxia-hypercapnia, mean flow increased 17% (P < 0.001), but the amplitude and contour of pulsatile cortical blood flow were unchanged (P > 0.10). Although aortic occlusion, during hypoxia-hypercapnia as well as during normoxia-normocapnia, increased systemic pulse pressure by 40%, the amplitude of cortical flow pulsations was unaffected. Changes in dynamic properties of the cerebral vasculature (P < 0.0001 by analysis of the transfer function) minimized alterations in pulsatile cortical blood flow and thus intrabeat vessel wall stress during acute hypertension; on the basis of analysis of an electrical analogue, we propose that these changes reflect alterations in both resistance and compliance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3