Acute heat stress protects rats against endotoxin shock

Author:

Ryan A. J.1,Flanagan S. W.1,Moseley P. L.1,Gisolfi C. V.1

Affiliation:

1. Department of Exercise Science, University of Iowa, Iowa City 52242.

Abstract

The purpose of this study was to determine 1) whether prior (24-h) heat stress could render rats cross-resistant to the lethal activity of bacterial lipopolysaccharide (LPS) and 2) whether this acquired state of resistance is associated with endotoxemia during the heat stress event. Four groups (n = 7/group) of rats were examined: 1) saline treated, 2) LPS treated, 3) heat stressed and saline treated, and 4) heat stressed and LPS treated. Saline or LPS (Escherichia coli, serotype 0111:B4, 20 mg/kg body wt) was given intravenously 24 h after exposure to heat (ambient temperature 47–50 degrees C, relative humidity 30%) for heat-stressed rats and at the same time of day for nonheated rats; survival was monitored for 48 h. Thermal responses were similar (P > 0.05); values for maximum core temperature (Tc) and time above Tc of 40 degrees C were 42.7 +/- 0.1 and 42.6 +/- 0.1 degrees C (SE) and 44.0 +/- 2.1 and 47.9 +/- 3.7 (SE) min for the heat-stressed saline-treated and heat-stressed LPS-treated rats, respectively. Administration of LPS to nonheated rats resulted in 71.4% (5 of 7 rats) lethality. In contrast, all (7 of 7) rats subjected to a single nonlethal heat stress event 24 h before LPS treatment survived (P < 0.05). Endotoxin was not detected in arterial plasma immediately after heat stress in rats (n = 6) exposed to a Tc of 42.9 +/- 0.1 degrees C. These findings demonstrate that acute heat stress can protect rats from the lethal activity of LPS.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3