Radiographic comparison of human lung shape during normal gravity and weightlessness

Author:

Michels D. B.,Friedman P. J.,West J. B.

Abstract

Human lung shape was measured during zero gravity (0 G) to decide whether the normal vertical regional differences in ventilation are due directly to distortion of the elastic lung by its own weight, or instead, due indirectly to the effect of gravity on the shape of the rib cage and diaphragm. This was important because we previously established that weightlessness virtually abolishes the normal topographical inequality of ventilation (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 987–998, 1978). Chest radiographs were made after 10 s of a weightless flight trajectory aboard a NASA-Ames Research Center Learjet in both posterior-anterior and left lateral projections on five seated volunteers at residual volume, functional residual capacity, and total lung capacity. Lung shape was assessed by measuring lung heights and widths in upper, middle, and lower lung regions. We found no significant differences between any of the normal gravity (1 G) and o G measurements, although there was a slight tendency for the lung to become shorter and wider at o G (mean changes generally less than 3% or about 0.5 cm). By contrast, Grassino et al. (J. Appl. Physiol. 39: 997–1003, 1975) found no change in the vertical distribution of ventilation after voluntarily changing lung dimensions by more than 1 cm by moving the abdomen in or out. We conclude that gravity produces the topographical distribution of ventilation in the upright human lung by distorting the elastic lung tissue within the chest rather than by altering the shape of the rib cage and diaphragm.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lung volume, capacity and shape in microgravity: A systematic review and meta-analysis;Acta Astronautica;2023-11

2. Prone positioning redistributes gravitational stress in the lung in normal conditions and in simulations of oedema;Experimental Physiology;2021-01-06

3. Human Response to Space Flight;Principles of Clinical Medicine for Space Flight;2019

4. Respiration in Closed Environments and Space;Nunn's Applied Respiratory Physiology;2017

5. Respiration and Respiratory Control;SpringerBriefs in Space Life Sciences;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3