Influence of skin temperature on sweating and aerobic performance during severe work

Author:

Davies C. T.

Abstract

Two male subjects were measured over a range of work intensities at dry-bulb temperature (Tdb) = 21 degrees C (relative humidity, rh less than 50%) and at approximately 65 and 85% VO2max for 1 h at Tdb at 5,10,15,21, and 25 degrees C with high convective airflow (2.5–5 m/s). The results showed that mean skin temperature (Tsk) was related to Tdb and unaffected by rh over the range studied. Tsk was dependent on the relative work load and was 2.5 degrees C lower at 85% than 65% VO2max in the cooler environments. During submaximal work the relative sweat rate (Msw expressed as %Mse, max) was a linear function of rectal temperature (Tre) and Tsk for each subject and thus %Msw, max could be predicted from these two variables with a standard deviation of +/- 12%. For a given Tsk, Tre appeared to rise to meet the requirement of heat loss by stimulating set %Msw response. However, during severe work (85% VO2max) this mechanism appeared to become saturated, Tre (except for a very narrow prescriptive range) was dependent on Tdb. These results suggest that under moderate environmental conditions the maximal aerobic and evaporative (cooling) power outputs of an individual are closely matched and only during extremely hard work does thermoregulation become passive and effectively physical (rather than physiological) in nature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3