Comparison of direct and indirect measurements of pulmonary capillary transit times

Author:

Capen R. L.,Latham L. P.,Wagner W. W.

Abstract

Using in vivo microscopy, we made direct measurements of pulmonary capillary transit time by determining the time required for fluorescent dye to pass from an arteriole to a venule on the dependent surface of the dog lung. Concurrently, in the same animals, pulmonary capillary transit time was measured indirectly in the entire lung using the diffusing capacity method (capillary blood volume divided by cardiac output). Transit times by each method were the same in a group of five dogs [direct: 1.75 +/- 0.27 (SE) s; indirect: 1.85 +/- 0.33 s; P = 0.7]. The similarity of these transit times is important, because the widely used indirect determinations based on diffusing capacity are now shown to coincide with direct measurements and also because it demonstrates that measurements of capillary transit times on the surface of the dependent lung bear a useful relationship to measurements on the capillaries in the rest of the lung.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiac Computed Tomography Imaging;Advances in Small Animal Care;2022-11

2. Pulmonary Hemodynamics;Comparative Biology of the Normal Lung;2015

3. Lung perfusion measured using magnetic resonance imaging: New tools for physiological insights into the pulmonary circulation;Journal of Magnetic Resonance Imaging;2010-11-23

4. Functional Imaging: CT and MRI;Clinics in Chest Medicine;2008-03

5. The comprehensive imaging-based analysis of the lung;Academic Radiology;2004-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3