Exercise-induced cardiac hypertrophy is associated with an increased myocardial compliance

Author:

Woodiwiss A. J.1,Norton G. R.1

Affiliation:

1. Department of Physiology, University of the Witwatersrand Medical School, Johannesburg, South Africa.

Abstract

Left ventricular (LV) chamber and myocardial wall compliance were investigated in rats with exercise-induced cardiac hypertrophy. Voluntary exercise training was performed on running wheels. After 16 wk of exercise training, cardiac performance was measured in anesthetized open-chest ventilated rats. LV end-diastolic performance was calculated from both short-axis external diameter and long-axis segmental length measurements. Exercise-trained rats developed significant LV hypertrophy (1.03 +/- 0.02 g) compared with control rats (0.91 +/- 0.03 g; P < 0.01). The physiological hypertrophy was associated with an increased LV wall thickness-to-internal radius ratio consistent with a concentric geometry. LV end-diastolic stiffness (slope of the linearized LV end-diastolic pressure-strain relationship) was decreased in both the short (P < 0.02) and long (P < 0.02) axis of LV as a result of exercise training. The LV end-diastolic chamber stiffness (slope of the linearized LV end-diastolic pressure-volume relationship) was also decreased in the exercised group (P < 0.05). The decreased chamber stiffness occurred as a consequence of a decrease in the regional myocardial wall elastic stiffness (slope of the linearized LV end-diastolic stress-strain relationship; P < 0.05). Thus an increased LV wall thickness as a result of exercise-induced LV hypertrophy is associated with an enhanced ventricular chamber compliance, which in turn is attributed to a decrease in the diastolic stiffness of the myocardial wall.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3