Autoregulation during pressor response elevates wall shear rate in arterioles

Author:

Kurjiaka D. T.1,Segal S. S.1

Affiliation:

1. The John B. Pierce Laboratory, Yale University School of Medicine, New Haven, Connecticut 06519, USA.

Abstract

Autoregulation of blood flow implies reciprocal changes in vessel diameter and red blood cell velocity (VRBC) when perfusion pressure is altered. We tested two hypotheses: 1) blood flow will be autoregulated throughout arteriolar networks during a pressor response, and 2) wall shear rate (WSR; proportional to VRBC/diameter) will increase during autoregulation. Male hamsters (109 +/- 3 g; n = 22) were anesthetized (pentobarbital sodium 60 mg/kg), and the cremaster muscle was prepared for intravital videomicroscopy. Internal diameter and VRBC were monitored in first (1A)- through fourth (4A)-order arterioles; WSR and blood flow were calculated. Data were acquired at rest and at the peak of diameter responses to bilateral carotid artery occlusion (CAO). At rest, 1) mean arterial and 1A transmural pressures were 100 +/- 5 and 59 +/- 4 mmHg, respectively; 2) as branch order increased, arteriolar diameter, VRBC, and blood flow decreased (P < 0.05); and 3) WSR and resting tone increased with branch order (P < 0.05). During pressor responses to CAO, 1) arterial and 1A pressures increased to 145 +/- 7 and 89 +/- 5 mmHg, respectively (P < 0.05); 2) 1A branches dilated while 2A, 3A, and 4A branches constricted (P < 0.05); 3) VRBC and WSR increased in all branches (P<0.05); and 4) blood flow increased in 1A and 2A branches (P < 0.05), yet was unchanged (i.e., was autoregulated) in 3A and 4A branches. Arteriolar constrictions during CAO were not affected by alpha-adrenoceptor blockade with phentolamine (10(-6) M). We conclude that autoregulation of muscle blood flow during a pressor response involves myogenic constriction of arterioles with concomitant elevation of WSR.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3