Direct effects of CO on cerebral energy metabolism in bloodless rats

Author:

Piantadosi C. A.,Lee P. A.,Sylvia A. L.

Abstract

Cerebrocortical b-cytochromes have been found to be sensitive to reduction in the presence of CO and O2 in vivo. CO-mediated cytochrome b reduction responses in "bloodless" rats were correlated in this study with changes in concentrations of high energy and glycolytic intermediates measured in cortex after rapid brain freezing. Cytochrome redox state and metabolite concentrations also were compared with cerebral blood flow (CBF) and cerebral metabolic rate for O2 (CMRo2) measured before and after CO administration. No definite biochemical evidence of energy limitation was found in parietal cortex after the fluorocarbon-for-blood exchange; however, CO had direct effects on brain metabolite concentrations. Fifteen-minute CO exposures at inspired CO/O2 of 0.003-0.06 increased cerebrocortical phosphocreatine and ADP and decreased creatine concentration. CO exposure produced no significant changes in either ATP concentration or CMRo2, although CBF increased slightly. These findings may be interpreted to indicate that CO binding to cytochrome aa3 at low CO/O2 in vivo increases extramitochondrial pH relative to that within the mitochondrial matrix. In the process, cytochrome b reduction levels increase, possibly signaling an increased efficiency of oxidative phosphorylation relative to O2 uptake by unblocked respiratory chains.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interaction Between Carbon Monoxide(CO) and Hyperbaric Oxygenation;Hyperbaric Oxygenation;2023

2. Effects of Pharmacological Agents on CSD;Cortical Spreading Depression of Leao;2022

3. Vom Badezimmer in die Druckkammer;Notfall + Rettungsmedizin;2013-01-13

4. Gases in the mitochondria;Mitochondrion;2010-03

5. Clinical Care in Extreme Environments: At High and Low Pressure and in Space;Miller's Anesthesia;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3