Affiliation:
1. Department of Physiology and Pharmacology, Tokyo College of Pharmacy, Japan.
Abstract
The mechanism underlying exhaustive exercise-induced release of lysosomal enzymes was studied in the rat liver. Exhaustive exercise resulted in the release of beta-glucuronidase and cathepsin D, but not beta-glucosidase and acid phosphatase, into the blood and cytosol, suggesting that the release of lysosomal enzymes is not due to disruption of lysosomal membranes. The intralysosomal pH of the liver, which was approximately 5.5 at the resting level, rose significantly after exhaustive exercise to pH 6.3. In vitro, beta-glucuronidase and cathepsin D were released at an intralysosomal pH exceeding 6.2. In contrast, beta-glucosidase and acid phosphatase were not released. The elevation of intralysosomal pH reduced the aggregation of beta-glucuronidase and cathepsin D. The rate of ammonia accumulation increased markedly in the lysosome-enriched subcellular fraction after exercise. There was a positive relationship between the rate of ammonia accumulation and the elevation of intralysosomal pH in vitro. Lysosomes isolated after exhaustive exercise showed significantly increased osmotic fragility. Our findings suggest that, during exhaustive exercise, the accumulation of ammonia in lysosomes leads to the elevation of intralysosomal pH, resulting in the reduced aggregation of certain lysosomal enzymes. Thus, less aggregated lysosomal enzymes may be released into the cytosol through the lysosomal membrane, the permeability of which has been increased.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献