Respiratory system mechanics in mice measured by end-inflation occlusion

Author:

Ewart S.1,Levitt R.1,Mitzner W.1

Affiliation:

1. Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA.

Abstract

Characterization of pulmonary function parameters in mice will facilitate the dissection of genetic mechanisms underlying airway hyperresponsiveness. We evaluated acetylcholine (ACh)-induced respiratory system resistance (Rrs) and elastance (Ers) in A/J and C3H/HeJ mice and compared these results with the previously used airway pressure-time index (APTI). A low-dead-space ventilatory system was designed to ventilate anesthetized mice with constant inspiratory flow. The end-inflation occlusion method was used to measure Rrs and Ers at baseline and after intravenous ACh (12.5–75.0 micrograms/kg) challenge. ACh induced a dose-dependent rise in Rrs and Ers in A/J mice, whereas minimal changes were observed in C3H/HeJ mice. A/J mice had a higher baseline Rrs, yet the response to ACh was independent of baseline Rrs. Additionally, sequential ACh challenges led to augmented responses. Rrs, Ers, and APTI were strongly correlated, and each was useful to detect differences in interstrain cholinergic-induced airway responsiveness. The Rrs detected the smallest differences between the strains of mice studied.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3