Investigation of VO2 kinetics in humans with pseudorandom binary sequence work rate change

Author:

Hughson R. L.1,Winter D. A.1,Patla A. E.1,Swanson G. D.1,Cuervo L. A.1

Affiliation:

1. Department of Kinesiology, University of Waterloo, Ontario, Canada.

Abstract

The dynamic response of oxygen uptake (VO2) was investigated with two different cycle ergometer tests in which the work rate changed as a pseudorandom binary sequence (PRBS). One sequence had 15 units, each of 30-s duration for a total of 450 s (PRBS1). The second had 63 units, each of 5-s duration for a total of 315 s (PRBS2). The useful range of frequencies available for investigation of the dynamic characteristics of the VO2 response as described by their bandwidth were 0.002-0.013 Hz for PRBS1 and 0.003-0.089 Hz for PRBS2. Eight subjects each completed both PRBS tests. Data from four or five consecutive sequences were ensemble averaged to reduce the biological noise. A Fourier analysis was then conducted, with the range of frequencies investigated spanning those of the bandwidth for PRBS2. This was up to the 28th harmonic. For PRBS1, the VO2 response could be adequately reconstructed by including Fourier coefficients only up to the 5th harmonic. In contrast, for PRBS2, there was still a clear pattern in the residuals at the 5th harmonic. The data were not adequately reconstructed until higher-frequency components up to the 28th harmonic were included. Evidence for this came from analysis of the mean square error. The mean square error at the 28th harmonic was reduced to 83 +/- 8% of the mean square error at the 5th harmonic for PRBS1 and to 31 +/- 3% for PRBS2 (P less than 0.0001). These data obtained by Fourier analysis and reconstructed for comparison with the original VO2 response indicate the presence of a high-frequency component that was not apparent when a test with a smaller bandwidth was used as the work rate forcing.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3