Development of a model of complete heart block in rats

Author:

Lee Randall J.1,Sievers Richard E.1,Gallinghouse G. Joseph1,Ursell Philip C.2

Affiliation:

1. Department of Medicine and Cardiovascular Research Institute, and

2. Department of Pathology, University of California, San Francisco, California 94143-1354

Abstract

Atrioventricular (AV) block is a useful substrate for the study of cardiac physiology. The objective of this investigation was to develop a straightforward and reproducible model of permanent AV block in rats. Working through a sternotomy, we used an epicardial fat pad between the aortic root and the right atrial wall of the rat as a landmark for the site for injection of 70% ethanol (5–10 μl) into the myocardium 3 mm below the epicardial surface. Stable, complete heart block was produced in 23 of 28 rats (82%) with a success rate of 100% in the last 16 rats of the series. Saline injection produced no heart block in 15 rats. A separate group of 14 animals was allowed to recover. Chronic heart block was achieved in all ethanol-injected animals for up to 7 days before death. The survival rate in the recovered rats was 90% in the ethanol-injected group and 100% in the saline-injected control group. Acute hemodynamic changes following the production of heart block consisted of an increase in central venous pressure, a decrease in systolic blood pressure, a decrease in left ventricular pressure, and a decrease in change in pressure over time. Chronic hemodynamic changes demonstrated a return to baseline of the central venous pressure, a persistent decrease in systolic blood pressure, and a decrease in left ventricular pressure. After the rats were killed and the hearts were dissected, discrete areas of myocardial damage were identified histologically in the atrial septum near the AV conduction axis tissue in the ethanol-injected hearts. Complete heart block was associated only with lesions extending into the specialized muscle of the AV node or His bundle. Focal mild hemorrhage, inflammation, and damaged myocardial fibers were observed in the acute stage, whereas healing lesions were characterized by granulation tissue and fibrosis replacing conduction tissue. The simple technique described provides a reproducible model for permanent, complete heart block and the study of cardiac function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3