Concurrent resistance and endurance training influence basal metabolic rate in nondieting individuals

Author:

Dolezal Brett A.1,Potteiger Jeffrey A.1

Affiliation:

1. Exercise Physiology Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas 66045-2348

Abstract

Thirty physically active healthy men (20.1 ± 1.6 yr) were randomly assigned to participate for 10 wk in one of the following training groups: endurance trained (ET; 3 days/wk jogging and/or running), resistance trained (RT; 3 days/wk resistance training), or combined endurance and resistance trained (CT). Before and after training, basal metabolic rate (BMR), percent body fat (BF), maximal aerobic power, and one-repetition maximum for bench press and parallel squat were determined for each subject. Urinary urea nitrogen was determined pre-, mid-, and posttraining. BMR increased significantly from pre- to posttraining for RT (7,613 ± 968 to 8,090 ± 951 kJ/day) and CT (7,455 ± 964 to 7,802 ± 981 kJ/day) but not for ET (7,231 ± 554 to 7,029 ± 666 kJ/day). BF for CT (12.2 ± 3.5 to 8.7 ± 1.7%) was significantly reduced compared with RT (15.4 ± 2.7 to 14.0 ± 2.7%) and ET (11.8 ± 2.9 to 9.5 ± 1.7%). Maximal aerobic power increased significantly for ET (13%) but not RT (−0.2%) or CT (7%), whereas the improvements in one-repetition maximum bench press and parallel squat were greater in RT (24 and 23%, respectively) compared with CT (19 and 12%, respectively). Urinary urea nitrogen loss was greater in ET (14.6 ± 0.9 g/24 h) than in RT (11.7 ± 1.0 g/24 h) and CT (11.5 ± 1.0 g/24 h) at the end of 10 wk of training. These data indicate that, although RT alone will increase BMR and muscular strength, and ET alone will increase aerobic power and decrease BF, CT will provide all of these benefits but to a lesser magnitude than RT and ET after 10 wk of training.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3