Role of blood as heat source or sink in human limbs during local cooling and heating

Author:

Ducharme M. B.1,Tikuisis P.1

Affiliation:

1. Environmental Physiology Section, Defence and Civil Institute of Environmental Medicine, North York, Ontario, Canada.

Abstract

The objective of the present study was to investigate the relative contribution of the convective heat transfer in the forearm and hand to 1) the total heat loss during partial immersion in cold water [water temperature (Tw) = 20 degrees C] and 2) the heat gained during partial immersion in warm water (Tw = 38 degrees C). The heat fluxes from the skin of the forearm and finger were continuously monitored during the 3.5-h immersion of the upper limb (forearm and hand) with 23 recalibrated heat flux transducers. The last 30 min of the partial immersion were conducted with an arterial occlusion of the forearm. The heat flux values decreased during the occlusion period at Tw = 20 degrees C and increased at Tw = 38 degrees C for all sites, plateauing only for the finger to the value of the tissue metabolic rate (124.8 +/- 29.0 W/m3 at Tw = 20 degrees C and 287.7 +/- 41.8 W/m3 at Tw = 38 degrees C). The present study shows that, at thermal steady state during partial immersion in water at 20 degrees C, the convective heat transfer between the blood and the forearm tissue is the major heat source of the tissue and accounts for 85% of the total heat loss to the environment. For the finger, however, the heat produced by the tissue metabolism and that liberated by the convective heat transfer are equivalent. At thermal steady state during partial immersion in water at 38 degrees C, the blood has the role of a heat sink, carrying away from the limb the heat gained from the environment and, to a lesser extent (25%), the metabolic and conductive heats. These results suggest that during local cold stress the convective heat transfer by the blood has a greater role than that suggested by previous studies for the forearm but a lesser role for the hand.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3