Disturbance of alveolar lining layer: effects on alveolar microstructure

Author:

Bachofen H.1,Schurch S.1,Possmayer F.1

Affiliation:

1. Department of Anatomy, University of Berne, Switzerland.

Abstract

To further study the influence of altered surface tensions on alveolar micromechanics, we analyzed the structure-function relationships in excised rabbit lungs filled with or rinsed by a fluorocarbon (approximately 15 mN/m) or by hexadecane (approximately 25 mN/m). The lungs were fixed and dehydrated by vascular perfusion, and the tissue samples were analyzed by light, transmission, and scanning electron microscopy. We made three observations. 1) Pressure-volume (P-V) loops hexadecane-filled lungs are shifted to the left and coincide with those of saline-filled lungs, indicating near-zero interfacial tension. In accordance, the alveolar microstructure and surface area of hexadecane-filled lungs resemble those of saline-filled lungs. 2) The P-V loops of fluorocarbon-filled lungs are not shifted to the left but coincide with those of fluorocarbon-rinsed lungs. Under both conditions, the alveolar microstructure is qualitatively identical and the alveolar surface areas are markedly reduced compared with normal air-filled lungs. These findings show that fluorocarbon-filled or fluorocarbon-rinsed lungs are subjected to similar interfacial tensions at the alveolar level. 3) Hexadecane-rinsed lungs show a pear-shaped P-V curve and a complex surface texture of peripheral air spaces. These results, together with in vitro observations, suggest a metamorphic interplay between lung surfactant and hexadecane in lining the surface and determining the surface tension. Evidently, the effects of foreign liquids introduced into the lung on the structure-function relationship cannot accurately be predicted from their in vitro surface tensions. This fact should be considered in the development of artificial surfactants.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3