Modulation of IGF mRNA abundance during stretch-induced skeletal muscle hypertrophy and regression

Author:

Czerwinski S. M.1,Martin J. M.1,Bechtel P. J.1

Affiliation:

1. US Department of Agriculture, Livestock and Poultry Sciences Institute, Beltsville, Maryland 20705.

Abstract

Increased load on a muscle (synergistic overload or stretch) results in muscle hypertrophy. The expression of insulin-like growth factor I (IGF-I) mRNA in rat skeletal muscle is increased during synergistic overload-induced hypertrophy. Although it has also been established that fasting animals lose muscle protein, it has been shown that compensatory muscle hypertrophy occurs in adult fasting rats that are undergoing a net loss of body weight. The purpose of this investigation was to determine whether a relationship exists between IGF-I mRNA levels and muscle growth and regression. This was accomplished by examining whether IGF-I mRNA levels were altered during muscle hypertrophy after stretch and regression and the effect of fasting on IGF-I mRNA levels during stretch-induced hypertrophy. Patagialis (PAT) muscle weights increased 13 and 44% at 2 and 11 days of stretch, respectively. However, after removal of the stretch stimulus on day 11, PAT weights began to decrease, reaching control weights by 18 days. During the first time point (2 days), PAT muscle IGF-I mRNA remained constant. IGF-I mRNA abundance was threefold greater than contralateral control levels by 11 days of stretch. IGF-I mRNA levels decreased but remained significantly above control levels throughout the regression of hypertrophy (13, 18, and 25 days). Fasting did not alter PAT muscle response to stretch. After 11 days of stretch, PAT muscle weight increased 60% compared with contralateral control muscles and IGF-I mRNA levels increased three-fold. This study supports a role for IGF-I in muscle hypertrophy but not muscle atrophy.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3