Circulatory adaptation to bimodal respiration in the dipnoan lungfish

Author:

Fishman A. P.,DeLaney R. G.,Laurent P.

Abstract

In the dipnoan lungfish, Protopterus aethiopicus, P. annectens, and Lepidosiren paradoxa, the ductus is a short powerful muscular vascular trunk forming a channel for communication between the systemic and pulmonary circulations. In structure, the dipnoan ductus is very similar to the ductus arteriosus (Botalli) in the mammal. Innervation is abundant, consisting of myelinated and nonmyelinated nerve fibers issuing, at least in part, from the vagus. Neurons are present in the adventitia, and numerous nerve profiles, filled with small agranular vesicles, are closely associated with the myocytes, suggesting strong cholinergic control. Perfusion of the ductus in vitro using hypoxic saline causes it to dilate; conversely it is constricted by alpha-agonists. Dopamine and prostaglandin E2 are potent dilators, whereas the beta-agonist, isoproterenol, and acetylcholine are less powerful. A vasomotor segment has been identified on the pulmonary artery (PAVS) close to its junction with the ductus. Its location and structure are similar to the corresponding segment in amphibians and reptiles. It is innervated by endings filled with small clear vesicles. Granular vesicle cells are also present within the adventitia. The PAVS is constricted by acetylcholine. As in amphibians, alpha-agonists and hypoxic saline are without vasomotor effects. Based on the anatomic and physiological observations, a concept of cyclic perfusion of the gas exchangers in Dipnoi is proposed. During the alternation between air breathing (emersion) and apneic phases (immersion), the pattern of the circulation in the lungfish oscillates between that of a tetrapod and a fish.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3