Effect of hypoxia on permeability of pulmonary endothelium of canine visceral pleura

Author:

Kinasewitz G. T.,Groome L. J.,Marshall R. P.,Leslie W. K.,Diana J. N.

Abstract

To determine if hypoxia increases the permeability of the pulmonary capillaries of the visceral pleura, water and protein movement across visceral pleura of isolated blood-perfused lungs ventilated with 20% O2–5% CO2 or 0% O2–5% CO2 was analyzed in terms of a two-compartment model of fluid exchange. Lungs from mongrel dogs were enclosed in a water-impermeable membrane, thereby creating an artificial visceral pleural space (VPS); fluid flux was determined as the filtration or reabsorption of water and protein in the VPS. Hypoxic vasoconstriction was prevented by adding verapamil to the perfusate. Hydrostatic pressures were continuously monitored and samples of perfusate and pleural fluid were obtained for protein determinations. Pulmonary capillary pressure was varied between 5 and 20 Torr by changing venous pressure while the protein concentration gradient was varied from 0.5 to 6.6 g/dl by introducing different solutions of plasma mixed with saline into the VPS. The hydraulic conductivity (Lp) increased from 4.25 +/- 0.74 to 9.18 +/- 0.67 X 10(-7) ml X s-1 X mmHg-1 X cm-2 and the diffusional permeability (Pd) of protein increased from 1.29 +/- 0.28 to 4.06 +/- 0.44 X 10(-6) cm/s under hypoxic conditions (P less than 0.05). Inhibition of xanthine oxidase by the addition of allopurinol (10 mg/kg body wt) to the perfusate prevented the increase in Lp and Pd observed under hypoxic conditions. We conclude that free radicals generated via xanthine oxidase may be responsible for the increased permeability observed during severe hypoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3