Human dose-response relationship for decompression and endogenous bubble formation

Author:

Eckenhoff R. G.1,Olstad C. S.1,Carrod G.1

Affiliation:

1. Department of Anesthesia, University of Pennsylvania Medical Center, Philadelphia 19104-6068.

Abstract

The dose-response relationship for decompression magnitude and venous gas emboli (VGE) formation in humans was examined. Pressure exposures of 138, 150, and 164 kPa (12, 16, and 20.5 ft of seawater gauge pressure) were conducted in an underwater habitat for 48 h. The 111 human male volunteer subjects then ascended directly to the surface in less than 5 min and were monitored for VGE with a continuous-wave Doppler ultrasound device over the precordium or the subclavian veins at regular intervals for a 24-h period. No signs or symptoms consistent with decompression sickness occurred. However, a large incidence of VGE detection was noted. These data were combined with those from our previously reported experiments at higher pressures, and the data were fit to a Hill dose-response equation with nonlinear least-squares or maximum likelihood routines. Highly significant fits of precordial VGE incidences were obtained with the Hill equation (saturation depth pressure at which there is a 50% probability of detectable VGE [D(VGE)50] = 150 +/- 1.2 kPa). Subclavian monitoring increased the sensitivity of VGE detection and resulted in a leftward shift [D(VGE)50 = 135 +/- 2 kPa] of the best-fit curve. We conclude that the reduction in pressure necessary to produce bubbles in humans is much less than was previously thought; 50% of humans can be expected to generate endogenous bubbles after decompression from a steady-state pressure exposure of only 135 kPa (11 ft of seawater). This may have significant implications for decompression schedule formulation and for altitude exposures that are currently considered benign. These results also imply that endogenous bubbles arise from preexisting gas collections.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decompression illness: a comprehensive overview;Diving and Hyperbaric Medicine Journal;2024-03-31

2. Decompression illness: a comprehensive overview;DIVING HYPERB MED;2024

3. Pulmonary Physiology and Medicine of Diving;Seminars in Respiratory and Critical Care Medicine;2023-06-27

4. Eccentric exercise 24 h prior to hypobaric decompression increases decompression strain;European Journal of Applied Physiology;2023-05-04

5. Protein tau concentration in blood increases after SCUBA diving: an observational study;European Journal of Applied Physiology;2022-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3