Mechanism by which positive end-expiratory pressure increases cerebrospinal fluid pressure in dogs

Author:

Luce J. M.,Huseby J. S.,Kirk W.,Butler J.

Abstract

We investigated possible mechanisms by which positive end-expiratory pressure (PEEP) increased cerebrospinal fluid pressure (PCSF) in anesthetized mechanically ventilated dogs. In part I of the study, PEEP was applied in 5 cmH2O increments each lasting 1–2 min, before and after a snare separated the spinal from the cerebral subarachnoid space in each animal. Next, with the spinal cord still ligated, the dogs were ventilated without PEEP while superior vena cava pressure (PSVC) was raised in 5 cmH2O increments by means of a fluid reservoir connected with the superior vena cava. Cerebrospinal fluid pressure in the cisterna magna increased immediately and in parallel with PEEP before and after the spinal subarachnoid space was occluded and also increased when PSVC was raised independently; in all circumstances the increase in PCSF correlated closely with PSVC (r = 0.926). In part II of the study, arterial blood gases were drawn before and after PEEP was applied in the same increments and for the same duration as in part I. Cerebrospinal fluid pressure measured with a hollow skull screw again rose in parallel with PEEP, whereas arterial carbon dioxide tension rose only slightly at 60 s. In part III of the study, mean arterial pressure (Pa) was allowed to decrease with PEEP or was held constant by distal aortic obstruction and volume infusion. Cerebrospinal fluid pressure increased regardless of Pa, but the increase was greater when Pa was held constant than when it fell with PEEP. We conclude that PEEP increases PCSF primarily by increasing PSVC and decreasing cerebral venous outflow. This effect is augmented if cerebral arterial inflow is increased as well.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3