Affiliation:
1. Department of Medicine, University of California, San Diego, La Jolla, California 92093-0931; and
2. Biomedical Physics Laboratory, Université Libre de Bruxelles, Brussels, Belgium
Abstract
Darquenne, Chantal, Manuel Paiva, John B. West, and G. Kim Prisk. Effect of microgravity and hypergravity on deposition of 0.5- to 3-μm-diameter aerosol in the human lung. J. Appl. Physiol. 83(6): 2029–2036, 1997.—We measured intrapulmonary deposition of 0.5-, 1-, 2-, and 3-μm-diameter particles in four subjects on the ground (1 G) and during parabolic flights both in microgravity (μG) and at ∼1.6 G. Subjects breathed aerosols at a constant flow rate (0.4 l/s) and tidal volume (0.75 liter). At 1 G and ∼1.6 G, deposition increased with increasing particle size. In μG, differences in deposition as a function of particle size were almost abolished. Deposition was a nearly linear function of the G level for 2- and 3-μm-diameter particles, whereas for 0.5- and 1.0-μm-diameter particles, deposition increased less between μG and 1 G than between 1 G and ∼1.6 G. Comparison with numerical predictions showed good agreement for 1-, 2-, and 3-μm-diameter particles at 1 and ∼1.6 G, whereas the model consistently underestimated deposition in μG. The higher deposition observed in μG compared with model predictions might be explained by a larger deposition by diffusion because of a higher alveolar concentration of aerosol in μG and to the nonreversibility of the flow, causing additional mixing of the aerosols.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献