Effects of detection and classification of resistive and elastic loads on endogenous event-related potentials

Author:

Bloch-Salisbury E.1,Harver A.1

Affiliation:

1. Department of Psychology, State University of New York at Stony Brook 11794.

Abstract

Resistive and elastic loads added to inspiration are readily detected, and detection latencies vary as a function of load magnitude and load type. In the present study, we recorded endogenous event-related potentials (i.e., N2 and P3) to the detection and classification of large (15.0 cmH2O.1–1.s and 70.0 cmH2O/l) and small (1.45 cmH2O.1–1.s and 19.0 cmH2O/l) loads equated for subjective magnitude in 14 men (mean age 21.14 yr). In blocks of trials comprised of either large or small loads, subjects made a button-press response upon detecting a load and then classified the load as resistive or elastic. Loads were presented briefly (for approximately 200 ms) early in inspiration and at the same level of inspiratory pressure. For loads of comparable magnitude, subjects detected equivalent numbers of resistive and elastic loads but could not discriminate reliably between load types. On the other hand, the latency of N2 was shorter to larger than to smaller loads, to resistive than to elastic loads, and to correct than to incorrect load classifications. The latency of P3 was affected similarly by load magnitude and load type. These findings demonstrate that event-related potentials are elicited by brief presentations of resistive and elastic loads and that N2 and P3 latencies vary reliably as a function of load magnitude and load type. Most importantly, event-related potential latencies are sensitive to load type and to classification accuracy even when resistive and elastic loads are not distinguishable subjectively.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural mechanisms of respiratory interoception;Autonomic Neuroscience;2024-06

2. Dyspnea;Respiratory Neurobiology - Physiology and Clinical Disorders, Part I;2022

3. The Sensation of Breathing;Cotes’ Lung Function;2020-02-21

4. Reprint of “Learning to breathe? Feedforward regulation of the inspiratory motor drive”;Respiratory Physiology & Neurobiology;2014-12

5. Learning to breathe? Feedforward regulation of the inspiratory motor drive;Respiratory Physiology & Neurobiology;2014-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3