Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung

Author:

Sugiura M.1,McCulloch P. R.1,Wren S.1,Dawson R. H.1,Froese A. B.1

Affiliation:

1. Department of Anesthesia, Queen's University, Kingston, Ontario, Canada.

Abstract

Both ventilator pattern and neutrophil activation influence lung injury in adult respiratory distress syndrome (ARDS). We therefore questioned whether ventilator pattern independently affects neutrophil accumulation and function in early ARDS. Thirty-five New Zealand White rabbits were anesthetized, paralyzed, and prepared using sterile techniques. Fifteen surfactant-depleted animals were randomized and ventilated for 4 h using high-frequency oscillatory ventilation (HFO) at 15 Hz with an inspired O2 fraction = 1.0 and arterial PO2 (PaO2) > 400 Torr (a pattern known to reverse atelectasis) or conventional mechanical ventilation (CMV) with PaO2 = 80–100 Torr (a pattern with some atelectasis despite positive end-expiratory pressure). Eight normal animals on CMV with PaO2 > 400 Torr served as a reference group (NorCMV). NorCMV animals progressively increased circulating polymorphonuclear neutrophil (PMN) numbers and had minor pressure-volume curve alterations but no other significant changes. Lavaged CMV animals developed the characteristic gas exchange and marked pressure-volume curve abnormalities of ARDS. Circulating PMNs remained constant but developed decreased chemotactic activity, whereas lung neutrophil numbers increased significantly (P = 0.0002) and had substantially enhanced chemiluminescence (P = 0.0003 vs. NorCMV animals). Although lavaged HFO animals accumulated an intermediate number of lung neutrophils (lung myeloperoxidase > NorCMV animals; P = 0.003), the chemiluminescence and chemotaxis of these PMNs were the same as in cells from NorCMV animals. We concluded that both the degree of neutrophil activation and lung injury can be minimized by preventing cyclic alveolar/airway expansion and collapse in the surfactant-deficient lung by use of appropriate ventilator patterns.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3