Gravitational and shear-associated pressure gradients in the abdomen

Author:

Loring S. H.1,Yoshino K.1,Kimball W. R.1,Barnas G. M.1

Affiliation:

1. Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115.

Abstract

The abdomen has been variously characterized as a hydrostatic system, in which pressures exhibit a gravitational gradient and pressure fluctuations are spatially uniform, and as a compartment, in which pressure gradients are not simply gravitational and pressure fluctuations differ markedly from place to place. To characterize the pressures acting on the ventral abdominal wall, we used saline-filled catheters and air-filled balloons in anesthetized dogs in various body positions during spontaneous breathing and mechanical ventilation. Pressures were measured in the stomach and at multiple sites next to the abdominal wall. Under most circumstances, measurements next to the abdominal wall exhibited a hydrostatic gravitational gradient of approximately 0.89 cmH2O/cm height and pressure fluctuations were spatially homogeneous. Deviations from this hydrostatic behavior were seen when abdominal pressures were compared with gastric pressures, when measurements were made with a balloon catheter, and when the lower abdomen was constricted with a binder. Analysis of these and previously published data suggests that the abdomen does, at times, behave like a hydraulic system but can deviate from simple hydrostatic behavior to the extent that shape-stable abdominal viscera are deformed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3