A computer simulation of pulmonary perfusion in three dimensions

Author:

Glenny R. W.1,Robertson H. T.1

Affiliation:

1. Department of Medicine, University of Washington, Seattle 98195, USA.

Abstract

Pulmonary perfusion is spatially correlated with neighboring regions of lung having similar magnitudes of flow and distant pieces exhibiting negative correlation. Although local correlation has been noted in a wide variety of natural processes, negative correlation has not and it may be unique to organ blood flow. We investigate the regional perfusion predicted by a three-dimensional branching vascular model to determine whether such a model can create negative correlation of perfusion. The distribution of flows is modeled by a dichotomously branching tree in which the fraction of flow from parent to daughter branches is gamma and 1-gamma at each bifurcation. The flow asymmetry parameter (gamma) is randomly chosen for each bifurcation from a normal distribution with a mean of 0.5 with an SD of sigma. The branches branch along one of three orthogonal directions to assure a space-filling structure. This model produces flow distributions similar to those observed in experimental animals, with perfusion being positively correlated locally and negatively correlated at distance. The model is refined by incorporating an effect of gravity, which redirects a fraction (delta), of the flow against gravity to the companion daughter branch in the gravitational direction. A flow bias in the “dorsal” direction is also introduced to account for differences in supine-prone perfusion gradients. In its final form, this three-dimensional branching model accounts for previously observed 1) spatial correlation of regional perfusion with negative correlation over distance, 2) isogravitational perfusion heterogeneity, 3) differences in supine and prone perfusion gradients, 4) positive correlation of flows between supine and prone postures, 5) relatively small contributions of gravity to perfusion heterogeneity, and 6) fractal distributions of flow. This three-dimensional branching vascular model relates the function and structure of the pulmonary vascular tree, offering an explanation for both heterogeneous and spatially correlated regional flows.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Respiratory Physiology for Intensivists;Critical Heart Disease in Infants and Children;2019

2. Gas Exchange in the Prone Posture;Respiratory Care;2017-05-30

3. Lung Circulation;Comprehensive Physiology;2016-03-15

4. A new approach to blood flow simulation in vascular networks;Computer Methods in Biomechanics and Biomedical Engineering;2015-07-21

5. Complexity and Emergent Phenomena;Comprehensive Physiology;2011-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3