Cardiovascular and renal function during exercise-induced blood volume expansion in men

Author:

Gillen C. M.1,Nishiyasu T.1,Langhans G.1,Weseman C.1,Mack G. W.1,Nadel E. R.1

Affiliation:

1. John B. Pierce Laboratory, Yale University School of Medicine, New Haven, Connecticut 06519.

Abstract

To test the hypothesis that reduced baroreflex sensitivity is a direct result of exercise, we measured forearm vascular conductance (FVC) responses to graded lower body negative pressure (LBNP) 2, 20, and 44 h after intense exercise. Eight 4-min bouts of exercise at 85% of maximum oxygen uptake produced 3.5 +/- 0.7 and 3.9 +/- 1.0% blood volume (BV) expansions at 20 and 44 h of recovery, respectively. BV was unchanged from control values 2 h after exercise. The reduction in FVC was significantly less than control values during 30 and 40 mmHg of LBNP at 2 and 20 h of recovery, respectively, whereas heart rate and cardiac stroke volume responses were unchanged. Thus, a reduced FVC response to LBNP preceded BV expansion, demonstrating that exercise itself can elicit an attenuation of baroreflex function. To test the hypothesis that volume sensitivity of renal function is attenuated by intense exercise, we measured cardiovascular variables, plasma hormone concentrations, and renal output. At 20 h of recovery, resting mean arterial blood pressure and cardiac output were increased by 6 +/- 1 mmHg and 0.6 +/- 0.2 l/min, respectively, but resting plasma aldosterone and overnight Na+ excretion rate were unchanged. At 44 h of recovery, plasma aldosterone was decreased by 26 +/- 9% and overnight Na+ excretion rate was increased by 51 +/- 26%. Thus, appropriate endocrine and renal responses to increased BV were delayed until 44 h of recovery. Our findings suggest that a postexercise attenuation of baroreflex function participates in the induction of BV expansion by intense exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3