Motor unit territories supplied by primary branches of the phrenic nerve

Author:

Hammond C. G.1,Gordon D. C.1,Fisher J. T.1,Richmond F. J.1

Affiliation:

1. Department of Physiology, Queen's University, Kingston, Ontario, Canada.

Abstract

Recent studies have demonstrated that, under certain circumstances, the diaphragm does not contract as a homogeneous unit. These observations suggest that motor units may not be randomly distributed throughout the muscle but confined to localized subvolumes. In the present study, electromyographic (EMG) and glycogen depletion methods were combined to investigate the organization of motor units supplied by the primary branches of the phrenic nerve in the cat. Four primary branches are generally present, one branch to the crus and three branches to the sternocostal region. The gross motor-unit territory of each of the four phrenic primary branches was determined by stimulating each nerve separately, while recording from nine EMG electrodes distributed over the hemidiaphragm. Stimulation of the crural branch evoked activity in the ipsilateral crus, whereas stimulation of each of the remaining branches evoked activity in discrete but overlapping areas of the sternocostal diaphragm. A more precise analysis of the distribution and borders of the motor territories was obtained by mapping regions depleted of muscle glycogen due to stimulation of each primary branch for 90 min. Glycogen depletion results closely matched the EMG findings of a localized distribution of motor units served by single primary branches. Stimulation of the crural branch typically caused depletion of the ipsilateral crus, whereas the sternocostal branches each served a striplike compartment. In the majority of cases, the borders of the sternocostal compartments were relatively abrupt and consisted of a 1- to 2-mm transition zone of depleted and nondepleted fibers. These studies demonstrate that motor unit territories of the primary branches of the phrenic nerve are highly delineated. This compartmentalization provides the central nervous system with the potential for a more precise regional motor control of costal and crural diaphragm than previously suspected.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3