Estimation of time-varying respiratory mechanical parameters by recursive least squares

Author:

Lauzon A. M.1,Bates J. H.1

Affiliation:

1. Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada.

Abstract

Continuous estimation of time-varying respiratory mechanical parameters is required to fully characterize the time course of bronchoconstriction. To achieve such estimation, we developed an estimator that uses the recursive linear least-squares algorithm to fit the equation Ptr = RV + EV + K to measurements of tracheal pressure (Ptr) and flow (V). The volume (V) is obtained by numerical integration of V. The estimator has a finite memory with length into the past at each point in time that varies inversely with the difference between the current measurement of Ptr and that predicted by the model, to allow the algorithm to track rapidly varying parameters (R, E, and K). V usually exhibits significant drift and must be corrected. Of the several correction methods investigated, subtraction of the recursively weighted average of V before integration to V was found to perform best. The estimator was tested on simulated noisy data where it successfully followed a fivefold increase in R and a twofold increase in E occurring over 10 s. Three dogs and two cats were anesthetized, paralyzed, tracheostomized, and challenged with a bolus of methacholine (approximately 13 mg/kg iv). Increases of 3- to 10-fold were observed in R and 2- to 3-fold in E, beginning within 10–40 s after the bolus injection. In some animals we found that the increase in E occurred more slowly than that in R, which the V signal suggested was due to dynamic hyperinflation of the lungs. These results demonstrate that our recursive estimator is able to track rapid changes in respiratory mechanical parameters during bronchoconstrictor challenge.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3