Author:
Morris A. H.,Blatter D. D.,Case T. A.,Cutillo A. G.,Ailion D. C.,Durney C. H.,Johnson S. A.
Abstract
Inflated lung has a nuclear magnetic resonance (NMR) free-induction decay (FID) which is short compared with that of collapsed lung and those of other body tissues. An almost identically short FID is obtained from a slurry of 5-micron alumina particles in water. Interfaces between air and water in lung and between alumina and water in the slurry appear to be the source of spatial internal magnetic inhomogeneities which produce NMR line broadening and the short FID. Paired images that included lung, taken with paired symmetric and asymmetric NMR spin-echo sequences, permit the generation of an image, by subtraction, of the lung isolated from surrounding tissue. These new lung images are neither proton density, T1 (spin-lattice relaxation time), nor T2 (spin-spin relaxation time) images. They complement current NMR images and provide information about regional lung inflation. This previously unrecognized NMR property of lung tissue has potential application in NMR imaging, in quantitative determination of lung water and its distribution, and in the quantitation of regional lung inflation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献