Costal and crural diaphragm function during CO2 rebreathing in awake dogs

Author:

Easton P. A.1,Fitting J. W.1,Arnoux R.1,Guerraty A.1,Grassino A. E.1

Affiliation:

1. Notre-Dame Hospital, University of Montreal, Quebec, Canada.

Abstract

If costal and crural diaphragm segments can perform as separate muscles, then CO2-stimulated ventilation may elicit differential segmental function. We studied diaphragm segmental length, shortening, and electromyogram (EMG) activity in 10 awake dogs chronically implanted with sonomicrometer transducers and EMG electrodes. During CO2 rebreathing, segmental shortening and EMG activity per whole tidal breath progressively increased, but segmental responses could not be differentiated at any level of CO2. With increasing CO2, resting end-expiratory length of both diaphragm segments increased. During the complete intrabreath inspiratory-expiratory cycle, costal and crural diaphragm revealed distinctive segmental function. At rest, crural shortening exceeded costal shortening in earliest inspiration, costal and especially crural shortening persisted into early expiration, and EMG activity of the crural segment was greater than that of the costal segment in earliest inspiration and showed more end-inspiratory/early expiratory [post-inspiratory inspiratory activity (PIIA)] activity. During CO2-stimulated breathing, neither segment shortened during the inspiratory flow of earliest inspiration. During CO2 rebreathing, shortening of the crural segment exceeded that of the costal segment during early inspiration and outlasted costal shortening during expiration; for both segments, shortening persisted after termination of inspiratory airflow. With increased CO2, EMG activity of the crural segment preceded that of the costal segment in earliest inspiration and was dominant into expiration, whereas costal EMG activity terminated abruptly with inspiratory flow. Thus, costal EMG PIIA was not evident during hypercapnia, whereas crural EMG PIIA was significant.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3