Dissipation of metabolic heat in the horse during exercise

Author:

Hodgson D. R.1,McCutcheon L. J.1,Byrd S. K.1,Brown W. S.1,Bayly W. M.1,Brengelmann G. L.1,Gollnick P. D.1

Affiliation:

1. Department of Veterinary and Comparative Anatomy, College of Veterinary Medicine, Washington State University, Pullman 99164.

Abstract

Horses were exercised at 40, 65, and 90% of their maximum O2 uptake (VO2max) until moderately fatigued (approximately 38, 15, and 9 min, respectively) to assess heat loss through different routes. Approximately 4,232, 3,195, and 2,333 kcal of heat were generated in response to exercise at these intensities. Of this, approximately 7, 16, and 20% remained as stored heat 30 min postexercise. Respiratory heat loss, estimated from the temperature difference between blood in the pulmonary and carotid arteries and the cardiac output, was estimated to be 30, 19, and 23% of the heat produced during exercise at the three intensities. The kinetics of the increases in muscle and blood temperature were similar, with the greatest change in temperature occurring in muscle (+3.8, 5.2, and 6.1 degrees C after exercise at 40, 65, and 90% of VO2max, respectively). The temperature of blood in the superficial thoracic vein was approximately 2 degrees C below that of arterial blood at rest. This difference had increased to approximately 3 degrees C during the last minute of exercise. The rate of sweating at sites on the back and neck increased with exercise intensity to a common peak of approximately 40 ml.m-2.min-1. If complete evaporation had occurred, water loss in response to exercise (estimated to be 12, 10, and 7.7 liters for the different intensities of exercise) greatly surpassed that required for dissipation of the metabolic heat load.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3