Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction

Author:

Lutchen K. R.1,Hantos Z.1,Petak F.1,Adamicza A.1,Suki B.1

Affiliation:

1. Department of Biomedical Engineering, Boston University, Massachusetts 02215, USA. KL@enga.bu.edu

Abstract

Recent studies have suggested that part of the measured increase in lung tissue resistance after bronchoconstriction is an artifact due to increased airway inhomogeneities. To resolve this issue, we measured lung impedance (ZL) in seven open-chest rats with the lungs equilibrated on room air and then on a mixture of neon and oxygen (NeOx). The rats were placed in a body box with the tracheal tube leading through the box wall. A broadband flow signal was delivered to the box. The signal contained seven oscillation frequencies in the 0.234- to 12.07-Hz range, which were combined to produce tidal ventilation. The ZL was measured before and after bronchoconstriction caused by infusion of methacholine (MCh). Partitioning of airway and tissue properties was achieved by fitting ZL with a model including airway resistance (Raw), airway inertance, tissue damping (G), and tissue elastance (H). We hypothesized that if the inhomogeneities were not significant, the apparent tissue properties would be independent of the resident gas, whereas Raw would scale as the ratio of viscosities. Indeed, during control conditions, the NeOx-to-air ratios for G and H were both 1.03 +/- 0.04. Also, there was a small increase in lung elastance (EL) between 0.234 and 4 Hz that was similar on air and NeOx. During MCh infusion, Raw and G increased markedly (45-65%), but the increase in H was relatively small ( < 13%). The NeOx-to-air Raw and H ratios remained the same. However, the NeOx-to-air G ratio increased to 1.19 +/- 0.07 (P < 0.01) and the increase in EL with frequency was now marked and dependent on the resident gas. These results provide direct evidence that for a healthy rat lung airway inhomogeneities do not significantly influence the lung resistance or EL vs. frequency data. However, during MCh-induced constriction, a large portion of the increase in tissue resistance and the altered frequency dependence of EL are virtual and a consequence of the augmented airway inhomogeneities.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3