Comparison of magnetic and electrical phrenic nerve stimulation in assessment of diaphragmatic contractility

Author:

Laghi F.1,Harrison M. J.1,Tobin M. J.1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Edward Hines, Jr. Veterans Affairs Hospital, Hines, Illinois 60141, USA.

Abstract

Unlike the standard electrical approach, cervical magnetic stimulation of the phrenic nerves is less painful and achieves a constant degree of diaphragmatic recruitment, features that should enhance its applicability in a clinical setting. An unexplained phenomenon is the greater transdiaphragmatic twitch pressure (Pditw) with magnetic vs. electrical stimulation. We hypothesized that this greater Pditw is due to coactivation of extradiaphragmatic muscles. Because impedance to rib cage expansion is increased at high lung volumes and efficiency of extradiaphragmatic muscles is less than that of the diaphragm, we reasoned that the difference between electrical Pditw and magnetic Pditw would be less evident at high volumes than at end-expiratory lung volume. In human volunteers, magnetic Pditw and electrical Pditw were 37.7 +/- 1.9 (SE) and 32.3 +/- 2.2 cmH2O, respectively, at end-expiratory lung volume (P < 0.005) and 24.0 +/- 2.9 and 27.2 +/- 2.8 cmH2O, respectively, at one-half inspiratory capacity (not significant); at total lung capacity, magnetic Pditw was less than electrical Pditw (10.6 +/- 0.8 and 16.2 +/- 2.9 cmH2O, respectively; P < 0.05). Magnetic stimulation caused significant extradiaphragmatic muscle depolarization and rib cage expansion, whereas electrical stimulation caused virtually no extradiaphragmatic muscle depolarization and rib cage deflation. Despite these differences, the induction of respiratory muscle fatigue produced reductions in both electrical and magnetic Pditw values (P < 0.01), which were of similar magnitude and closely correlated (r = 0.96). In conclusion, magnetic stimulation recruits both extradiaphragmatic and diaphragmatic muscles, and it is equally as effective as electrical stimulation in detecting diaphragmatic fatigue.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3