Use of a hypoxic lung as a deoxygenator to provide extended assessment of pulmonary function in rats

Author:

DeCampos K. N.1,Keshavjee S. H.1,Tremblay L.1,Yamashiro T.1,Slutsky A. S.1

Affiliation:

1. Department of Surgery, Toronto Hospital, Ontario, Canada.

Abstract

Isolated perfused lung systems are commonly used to assess lung function in experimental studies. Assessment of hemodynamics and gas-exchange function in these systems is limited by the availability of venous blood. This study describes and validates a rat lung perfusion circuit in which a double-lung block ventilated with a hypoxic gas mixture [inspired O2 fraction (FIO2) 0.04; inspired CO2 fraction 0.08; deoxygenator (Deoxy) block] is used to provide blood with blood gases that are similar to mixed venous values to perfuse a study lung (FIO2 0.21; left lung only). This allows extended assessment of hemodynamics and gas exchange. Fifty adult male Wistar rats (300-400 g) were used as double-lung donors. Twenty-five perfusions (of both Deoxy and study lungs) were performed in four protocols (groups 1-5; n = 5). In protocol 1 (group 1), we tested whether exposure to room air affects the gas composition of the blood in the system. We found that the gas composition of the venous reservoir blood was identical to that of the blood entering the study block. In protocol 2, the effect of perfusion time and perfusion flow rate on the stability of the system was assessed. Lungs were perfused at 4 and 12 ml/min (groups 2 and 3, respectively), and the procedure was discontinued if edema or a marked decline in hemodynamics or gas-exchange function was observed. Pulmonary function was excellent and remained stable for 3 (at 12 ml/min) and 5 h (at 4 ml/min). In protocol 3, we examined whether hypoxic ventilation in the Deoxy lungs affects the stability of the system. Despite the low FIO2 used in the Deoxy lungs, the mean pulmonary arterial pressure-to-blood flow relationships in the study and Deoxy lungs were similar. Finally, in protocol 4, perfusion of a damaged study lung did not impair the function of the system. We conclude that this model permits reliable assessment of pulmonary function in rats under controlled ventilation and perfusion conditions. The use of a Deoxy double-lung block simplifies the perfusion apparatus and eliminates the main cause of instability of other systems that use an anesthetized host animal to provide venous blood.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3