Indocyanine green densitometry in flowing blood compensated for background dye

Author:

Edwards Anthony W. T.1,Isaacson James1,Sutterer William F.1,Bassingthwaighte James B.1,Wood Earl H.1

Affiliation:

1. Sections of Physiology and of Engineering, Mayo Clinic and Mayo Foundation, Rochester, Minnesota

Abstract

Blood is nonhomogeneous; hence, the relationship between light transmission and increasing concentration of dye in whole blood is never the perfect exponential curve predicted by Beer's law. Instead, as the concentration of indocyanine green is increased to high levels (40 mg/liter) the light transmission decreases exponentially toward an asymptote at 6–8% transmission for nearly monochromatic densitometers (half-band width: 13–20 mμ), but at 30–40% for densitometers using light of wide-band width. Consequently, following recording of a dilution curve, circulating background dye reduces the change in transmission per unit increase in dye concentration in subsequent curves. This decrease in sensitivity cannot be compensated for by a simple increase in the sensitivity of the densitometer or in the intensity of its light source. Compensation can be attained, however, if increasing densitometer sensitivity is associated with the automatic scale expansion provided when a suppressed zero point is used. At correct zero suppression, the deflection for zero output of the densitometer coincides with the asymptotic transmission value mentioned above. indicator-dilution in circulation; blood flow measurement; blood optical density; dye dilution technic; cardiac output measurement Submitted on April 15, 1963

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compartmental Modeling in the Analysis of Biological Systems;Methods in Molecular Biology;2012

2. Through the microcirculatory maze with machete, molecule, and minicomputer (1986 Alza lecture);Annals of Biomedical Engineering;1987-09

3. Cardiovascular Adjustments to Thermal Stress;Comprehensive Physiology;1983-12

4. Transfer function through regional cerebral cortex evaluated by a photoelectric method;American Journal of Physiology-Heart and Circulatory Physiology;1983-09-01

5. Calibration of densitometers for indicator dye dilution;Cardiovascular Research;1977-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3