Affiliation:
1. Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.
Abstract
We recently reported that endotoxin infusion before O2 exposure significantly reduced or delayed the onset of pulmonary edema formation and respiratory failure by reducing the oxidant stress of O2 exposure. Despite these beneficial effects of endotoxin treatment, lung microvascular permeability eventually increased, but postmortem lung water content was less than expected. Prolonged O2 breathing blunts or abolishes the pulmonary constrictor response to alveolar hypoxia in some species, and it is possible that the loss of this response could contribute further to edema formation. To determine whether the reduction in lung edema observed in endotoxin-treated, O2-exposed lambs was linked to the preservation of hypoxic pulmonary vasoconstriction (HPV), we measured pulmonary vascular resistance before and after 8 min of isocarbic hypoxia (inspired O2 fraction 0.12) during each day of O2 exposure. In six control lambs, the pressor response to hypoxia was abolished after 72 h in O2, and the lambs developed respiratory failure shortly thereafter. In six endotoxin-treated lambs, HPV was preserved for as long as 144 h of O2 exposure. In two control O2-exposed lambs in whom HPV was abolished, the infusion of either angiotensin or prostaglandin H2 analogue increased pulmonary vascular resistance by greater than 75%. We conclude that in lambs 1) hyperoxia abolishes the pulmonary vascular response to hypoxia, 2) endotoxin pretreatment reduces acute O2-induced lung injury and preserves the pulmonary constrictor response to hypoxia, and 3) the loss of HPV during O2 exposure may be the result of oxidant-mediated injury to the hypoxia response itself and not the result of diffuse damage to the vasoconstrictor effector mechanism.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献