Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk

Author:

Ishihara H.1,McNally D. S.1,Urban J. P.1,Hall A. C.1

Affiliation:

1. University Laboratory of Physiology, University of Oxford, United Kingdom.

Abstract

The intervertebral disk is routinely subjected to compressive loads that alter with posture and muscle activity and can produce pressures = 2 MPa in human lumbar disks in vivo (A. Nachemson and G. Elfstrom. Scand. J. Rehabil. Med. 2, Suppl. 1:1-40, 1979; A. Nachemson and J. M. Morris. J. Bone Jt. Surg. Am. Vol. 46A: 1077-1092, 1964). We measured the effect of load on hydrostatic pressures in bovine caudal disks. With increase in applied load, pressure increased linearly in the nucleus and inner annulus. The resting pressure measured after slaughter (0.19 +/- 0.05 MPa) and the pressure at failure (34 MPa, estimated from the vertebrae/disk segment failure load of 7,430 +/- 590 N) define the limits that can occur in vivo. Because hydrostatic pressure influences matrix synthesis in articular cartilage, we have examined the effects of pressures in the range 1-10 MPa applied for 20 s or 2 h on proteoglycan synthesis in bovine caudal and human lumbar intervertebral disks in vitro. In the nucleus pulposus and inner annulus of bovine disks, application of hydrostatic pressure in the range of 1-7.5 MPa for only 20 s stimulated matrix synthesis over the following 2 h at atmospheric pressure. The maximum stimulation in the bovine disks was seen in the inner annulus after application of 2.5 MPa, where proteoglycan synthesis rates doubled. Exposure to 2.5 MPa also stimulated synthesis in the nucleus pulposus of human disks taken at surgery, whereas 7.5 MPa inhibited synthesis in five out of six specimens. With 2-h continuous exposure to the same levels of pressure, no stimulation was seen in the nucleus of bovine disks, and significant stimulation was only observed at 5.0 MPa in the inner annulus. Exposure to 10 MPa for either 20 s or 2 h inhibited proteoglycan synthesis in these regions of the disks. In contrast, in the outer annulus, where loading does not lead to a rise in hydrostatic pressure in vivo, there was no significant response to hydrostatic pressure over the range of 1-10 MPa in bovine or human disks.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3