Affiliation:
1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
Abstract
To evaluate the contribution of the large airway to total respiratory impedance, we develop a one-dimensional model of pressure and flow in these airways by coupling conservation of mass and momentum equations with the geometric information obtained by the acoustic reflection technique. We use this model to calculate the impedance of the respiratory system distal to the carina from impedance data estimated at the airway opening by the forced oscillation technique. Simulations show that the real part of the impedance distal to the carina is uniformly decreased from the impedance at the airway opening, indicating a resistive loss, while the imaginary part is increased as a function of frequency. We estimate parameter values for a six-parameter two-compartment lung model and for a three-parameter reduction of this model before and after the application of the upper airway data to the impedance spectrum. Although compliance terms seem to be minimally affected by the manipulation of the data, resistance and inertance terms are influenced in a fashion that suggests that the resistive contribution of the upper airway to total respiratory impedance is significant. Furthermore it appears that the elastic nature of the walls of the upper airway also impact on estimates of total respiratory impedance at the airway opening.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献