Fatigue of the mammalian diaphragm in vitro

Author:

Kelsen S. G.,Nochomovitz M. L.

Abstract

Diaphragm fatigue was studied in innervated diaphragm strips from 63 Sprague-Dawley rats. The experiments examined 1) the effect on the rate of diaphragmatic fatigue of increases in the diaphragm's duty cycle, i.e., the ratio of the period of diaphragmatic contraction (Ti) to the duration of a cycle of contraction and rest (Ttot) and 2) the possibility that impaired neural transmission contributed to the fatigue process. Alterations in the duty cycle of the diaphragm were simulated by varying the pattern of electrical stimuli applied cyclically to the phrenic nerve. Fatigue was assessed from the rate of fall of isometric tension when the muscle was made to contract 90 times/min. The contribution of neural element fatigue was assessed by comparing the tension during phrenic nerve stimulation to the tension developed when the muscle was stimulated directly. Increasing the duty cycle (Ti/Ttot) from 25 to 50 to 75% increased the rate of diaphragmatic fatigue progressively. Holding Ti/Ttot constant at 75%, while varying Ti and Ttot, did not affect the rate of fatigue. Increases in duty cycle appear to increase the rate of fatigue by increasing the number of times the contractile process was activated. In fatigued muscle strips diaphragmatic tension was greater in directly stimulated muscle than in muscle strips activated via the phrenic nerve. The results indicate that 1) when the breathing action of the diaphragm is simulated in vitro, increases in duty cycle accelerate the fatigue process and 2) failure of transmission of phrenic impulses to diaphragmatic muscle cells contributes to the fall in tension during fatigue.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3