Author:
Bencowitz H. Z.,Wagner P. D.,West J. B.
Abstract
Acclimatization to altitude often results in a rightward shift of the O2 dissociation curve (ODC). However, a left-shifted ODC is reported to increase exercise tolerance in humans at medium altitude and increase survival in rats breathing hypoxic gas mixtures. We examined this paradox using a computer model of pulmonary gas exchange. A Bohr integration procedure allowed for alveolar-capillary diffusion. When diffusion equilibration was complete, mixed venous (PVO2) and arterial PO2 fell as O2 consumption (VO2) was increased, but PVO2 approached a plateau. Under these conditions a right-shifted ODC is advantageous (higher PVO2) at all but very high altitudes. However, diffusion limitation of O2 transfer may occur at any altitude if VO2 is increased sufficiently. If this occurs, a left-shifted ODC results in higher calculated VO2max (compared with the standard ODC). Further, diffusion limitation always occurs at a lower VO2 with a right-shifted ODC than with a left-shifted ODC. We conclude that whether a leftward or rightward shift in the ODC is advantageous to gas exchange at altitude depends on the presence or absence of diffusion limitation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献