Author:
Bledsoe S. W.,Mines A. H.
Abstract
Keeping the arterial pH at 7.4 and PaCO2 at 40 mmHg in eight anesthetized dogs, we acutely raised plasma potassium concentration from 3.4 to 8.2 meq/1, then allowed it to decay back to control levels. The cerebrospinal fluid (CSF)-blood electrical potential difference (pd) increased 13.2 mV per 10-fold increase in plasma [K+]. Again keeping arterial pH at 7.4 and PaCO2 at 40 mmHg, we elevated plasma [K+] in four dogs from 3.3 to 8.0 meq/1 and maintained this level for 6 h. We found 1) that the PD increased from a control value of +1.3 to +8.9mV, showing no tendency to decay over the 6 h; and 2) that the change in PD did not affect the distribution of Na+, K+, H+, Cl-, or HCO3- between blood and CSF over the 6 h. These results suggest that under these conditions the PD between CSF and blood may play no effective role in determining the distributions of these charged species by 6 h. These results are contrasted with recent findings which suggest that H+ and HCO3- are distributed according to passive forces between CSF and blood.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献