Human eccrine sweat gland activity and palmar electrical skin resistance

Author:

Adams Thomas1,Vaughan John A.1

Affiliation:

1. Physiology Laboratories, Civil Aeromedical Research Institute, Oklahoma City, Oklahoma

Abstract

Sweat gland activity, monitored as a function of the rate at which water vapor was removed from the skin surface (EWL), was measured simultaneously with electrical skin resistance (ESR) from adjacent 1-cm2 areas on the human palm. Both ESR and EWL, and Delta ESR and Delta EWL, were correlated throughout 20–30 min of testing during which the subject rested or participated in conversation. The ratio Delta ESR/Delta EWL was greater the lower the EWL level. As EWL approached diffusion levels (0.06 mg/min.cm2), ESR assumed the highest and most stable value (ca. 170 kilohms). Subject differences in ESR at high EWL rates and the pattern of ESR-EWL relationships through the range of sudomotor activity (0.06–0.18 mg/min.cm2) are attributed to individual variation in the density and activity of sweat glands on the palmar surface. The character of ESR-EWL correspondence was also seen to vary with the phase of sweating activity for any one subject. evaporative water loss; physiological testing; galvanic skin reflex; psychological testing; psychogalvanic reflex; sweat measurement Submitted on October 22, 1964

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3